Bias toward long gene misregulation in synaptic disorders can be an artefact of amplification-based methods

bioRxiv(2018)

引用 0|浏览8
暂无评分
摘要
Several recent studies have suggested that genes that are longer than 100 kilobases are more likely to be misregulated in neurological diseases associated with synaptic dysfunction, such as autism and Rett syndrome. These length-dependent transcriptional changes are modest in Mecp2-mutant samples, but, given the low sensitivity of high-throughput transcriptome profiling technology, the statistical significance of these results needs to be re-evaluated. Here, we show that the apparent length dependent trends previously observed in MeCP2 microarray and RNA-Sequencing datasets, particularly in genes with low fold-changes, disappeared after accounting for baseline variability estimated from randomized control samples. As we found no similar bias with NanoString technology, this long-gene bias seems to be particular to PCR amplification-based platforms. In contrast, authentic long gene effects, such as those caused by topoisomerase inhibition, can be detected even after adjustment for baseline variability. Accurate detection of length-dependent trends requires establishing a baseline from randomized control samples.
更多
查看译文
关键词
Long gene misregulation bias,<italic>MECP2</italic>,transcriptome profiling,microarray,RNA-sequencing,Nanostring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要