The Impact of Molecular p-Doping on Charge Transport in High-Mobility Small-Molecule/Polymer Blend Organic Transistors

ADVANCED ELECTRONIC MATERIALS(2018)

引用 69|浏览18
暂无评分
摘要
Molecular doping is a powerful tool with the potential to resolve many of the issues currently preventing organic thin-film transistor (OTFT) commercialization. However, the addition of dopant molecules into organic semiconductors often disrupts the host lattice, introducing defects and harming electrical transport. New dopant-based systems that overcome practical utilization issues, while still reaping the electrical performance benefits, would therefore be extremely valuable. Here, the impact of p-doping on the charge transport in blends consisting of the small-molecule 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), the polymer indacenodithiophene-benzothiadiazole (C16IDT-BT), and the molecular dopant C60F48 is investigated. Electrical field-effect measurements indicate that p-doping not only enhances the average saturation mobility from 1.4 to 7.8 cm(2) V-1 s(-1) over 50 devices (maximum values from around 4 to 13 cm(2) V-1 s(-1)), but also improves bias-stress stability, contact resistance, threshold voltage, and the overall device-to-device performance variation. Importantly, materials characterization using X-ray diffraction, X-ray photoemission spectroscopy, and ultraviolet photoemission spectroscopy, combined with charge transport modeling, reveal that effective doping is achieved without perturbing the microstructure of the polycrystalline semiconductor film. This work highlights the remarkable potential of ternary organic blends as a simple platform for OTFTs to achieve all the benefits of doping, with none of the drawbacks.
更多
查看译文
关键词
hole mobility,molecular doping,organic thin-film transistors,small molecule polymer blends,solution processing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要