Learning a neural response metric for retinal prosthesis

international conference on learning representations(2018)

引用 7|浏览81
暂无评分
摘要
Retinal prostheses for treating incurable blindness are designed to electrically stimulate surviving retinal neurons, causing them to send artificial visual signals to the brain. However, electrical stimulation generally cannot precisely reproduce normal patterns of neural activity in the retina. Therefore, an electrical stimulus must be selected that produces a neural response as close as possible to the desired response. This requires a technique for computing a distance between the desired response and the achievable response that is meaningful in terms of the visual signal being conveyed. Here we propose a method to learn such a metric on neural responses, directly from recorded light responses of a population of retinal ganglion cells (RGCs) in the primate retina. The learned metric produces a measure of similarity of RGC population responses that accurately reflects the similarity of the visual input. Using data from electrical stimulation experiments, we demonstrate that this metric may improve the performance of a prosthesis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要