No2 Gas Sensor Based On Hydrogenated Graphene

APPLIED PHYSICS LETTERS(2017)

引用 28|浏览37
暂无评分
摘要
We investigated the relationship between defects in graphene and NO2 gas sensitivity of graphene-based gas sensors. Defects were introduced by hydrogen plasma or ultraviolet (UV)/ozone treatment. As the defect concentration increased, the sensitivity was enhanced, and sub-ppb level detection limit was achieved. UV irradiation was used for recovery at room temperature. However, defects generated by ozone treatment, like graphene oxide, were reduced back to graphene by UV irradiation, so the ozone-treated graphene sensor was not stable over time. In contrast, the response of the hydrogenated graphene sensor was very repeatable because defects generated by hydrogenation was stable enough not to be dehydrogenated by UV irradiation. These results demonstrate that the hydrogenated graphene sensor is a highly sensitive and stable NO2 sensor at room temperature. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要