Sources of reactive nitrogen in marine aerosol over the Northwest Pacific Ocean in spring

ATMOSPHERIC CHEMISTRY AND PHYSICS(2018)

引用 34|浏览14
暂无评分
摘要
Atmospheric deposition of long-range transport of anthropogenic reactive nitrogen (N-r, mainly comprised of NHx, NOy and water-soluble organic nitrogen, WSON) from continents may have profound impact on marine biogeochemistry. In addition, surface ocean dissolved organic nitrogen (DON) may also contribute to aerosol WSON in the overlying atmosphere. Despite the importance of off-continent dispersion and N-r interactions at the atmosphere-ocean boundary, our knowledge of the sources of various nitrogen species in the atmosphere over the open ocean remains limited due to insufficient observations. We conducted two cruises in the spring of 2014 and 2015 from the coast of China through the East China seas (ECSs, i.e. the Yellow Sea and East China Sea) to the open ocean (i.e. the Northwest Pacific Ocean, NWPO). Concentrations of water-soluble total nitrogen (WSTN), NO3- and NH4+, as well as the delta N-15 of WSTN and NO3- in marine aerosol, were measured during both cruises. In the spring of 2015, we also analysed the concentrations and delta N-15 of NO3- and the DON of surface seawater (SSW; at a depth of 5 m) along the cruise track. Aerosol NO3-, NH4+ and WSON decreased logarithmically (1-2 orders of magnitude) with distance from the shore, reflecting strong anthropogenic emission sources of NO3-, NH4+ and WSON in China. Average aerosol NO3- and NH4- concentrations were significantly higher in 2014 (even in the remote NWOP) than in 2015 due to the stronger wind field in 2014, underscoring the role of the Asian winter monsoon in the seaward transport of anthropogenic NO3- and NH4+. However, the background aerosol WSON over the NWPO in 2015 (13.3 +/- 8.5 nmol m(-3)) was similar to that in 2014 (12.2 +/- 6.3 nmol m(-3)), suggesting an additional non-anthropogenic WSON source in the open ocean. Obviously, marine DON emissions should be considered in model and field assessments of net atmospheric WSON deposition in the open ocean. This study contributes information on parallel isotopic marine DON composition and aerosol N-r datasets, but more research is required to explore complex N-r sources and deposition processes in order to advance our understanding of anthropogenic influences on the marine nitrogen cycle and nitrogen exchange at land-ocean and atmosphere-ocean interfaces.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要