ASASSN-16eg: New candidate of long-period WZ Sge-type dwarf nova

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN(2017)

引用 6|浏览71
暂无评分
摘要
We report on our photometric observations of the 2016 superoutburst of ASASSN-16eg. This object showed a WZ Sge-type superoutburst with prominent early superhumps with a period of 0.075478(8) d and a post-superoutburst rebrightening. During the superoutburst plateau, it showed ordinary superhumps with a period of 0.077880(3) d and a period derivative of 10.6(1.1) × 10^-5 in stage B. The orbital period (P_ orb), which is almost identical with the period of early superhumps, is exceptionally long for a WZ Sge-type dwarf nova. The mass ratio (q = M_2/M_1) estimated from the period of developing (stage A) superhumps is 0.166(2), which is also very large for a WZ Sge-type dwarf nova. This suggests that the 2:1 resonance can be reached in such high-q systems, contrary to our expectation. Such conditions are considered to be achieved if the mass-transfer rate is much lower than those in typical SU UMa-type dwarf novae that have comparable orbital periods to ASASSN-16eg and a resultant accumulation of a large amount of matter on the disk is realized at the onset of an outburst. We examined other candidates of long-period WZ Sge-type dwarf novae for their supercycles, which are considered to reflect the mass-transfer rate, and found that V1251 Cyg and RZ Leo have longer supercycles than those of other WZ Sge-type dwarf novae. This result indicates that these long-period objects including ASASSN-16eg have a low mass-transfer rate in comparison to other WZ Sge-type dwarf novae.
更多
查看译文
关键词
accretion, accretion disks,stars: dwarf novae,stars: individual (ASASSN-16eg),stars: novae, cataclysmic variables
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要