Fast Optical Work-Function Tuning At An Organic/Metal Interface

APPLIED PHYSICS LETTERS(2017)

引用 5|浏览15
暂无评分
摘要
In a two-color experiment, we demonstrate how light can be used as an external control to continuously tune the work function of a gold substrate functionalized with a dilute azobenzene-based self-assembled monolayer (SAM). The work function is measured by two-photon photoelectron spectroscopy. While in the ground state the azobenzene moiety adopts the trans configuration, illumination with pulsed laser light at a wavelength of 368 nm results in a photostationary state (PSS) mainly comprising cis isomers. An additional 450 nm continuous-wave laser with tunable intensity serves to shift the PSS back towards the ground state. This way the work function is freely adjustable in real time over a range of similar to 240 meV between the two PSS extrema. We furthermore relate the change in work function to the average change in dipole moment per azobenzene chromophore. Quantum-chemical calculations that take into account available structural data of the molecules in the SAM must consider at least two different trans and four different cis orientations. The computed respective perpendicular trans-cis dipole-moment changes indicate that in experiment the cis molecules adopt different orientations along with a very high cis azobenzene yield in the UV PSS. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要