Achieving high capacity and rate capability in layered lithium transition metal oxide cathodes for lithium-ion batteries

Journal of Power Sources(2017)

引用 24|浏览8
暂无评分
摘要
In this study, we target to find a new composition for a layered mixed metal oxide, which has a high structural stability and a good electrochemical performance. Our strategy is to alter the transition metal composition focusing on the relative amounts of redox active Ni and Co to the inactive Mn, based on highly-stabilized LiNi1/3Co1/3Mn1/3O2. X-ray absorption near-edge structure and X-ray diffraction analyses show that the degree of cation disorder decreases on increasing the ratio of Ni and Co to Mn, by the presence of Ni3+, suggesting that slightly higher Ni and Co contents lead to improved structural stability. Electrochemical studies demonstrate that LiNi0.4Co0.4Mn0.2O2 cathodes exhibit considerable improvements in both the reversible capacity and the rate capabilities at a voltage range of 2.5–4.6 V. In situ XRD measurements reveal that LiNi0.4Co0.4Mn0.2O2 maintains a single-phase and undergoes lesser structural variations compared to controlled compositions during a delithiation process up to 4.6 V, while achieving a high reversible capacity over 200 mAh g−1. As a result, LiNi0.4Co0.4Mn0.2O2 experiences fewer structural degradations during electrochemical cycling, which explains the excellent long-term cycling performance.
更多
查看译文
关键词
Composition,High capacity,Rate capability,Layered transition metal oxide,In situ X-ray diffraction,Single-phase reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要