The structural and electronic properties of metal atoms adsorbed on graphene

Physica E: Low-dimensional Systems and Nanostructures(2017)

引用 9|浏览3
暂无评分
摘要
Based on density functional theory (DFT), we studied the structural and electronic properties of seven different metal atoms adsorbed on graphene (M + graphene). The geometries, adsorption energies, density of states (DOS), band structures, electronic dipole moment, magnetic moment and work function (WF) of M + graphene were calculated. The adsorption energies ΔE indicated that Li, Na, K, Ca and Fe adsorbed on graphene were tending to form stable structures. However, diffusion would occur on Cu and Ag adsorbed on graphene. In addition, the electronic structure near the Fermi level of graphene was significantly affected by Fe (Cu and Ag), compared with Li (Na, K and Ca). The electronic dipole moment and magnetic moment of M + graphene were sensitive to the adsorbed metal atoms. Moreover, we found electropositive (electronegative) adsorption can decrease (increase) the WF of the surface. Specially, the WF of Ag + graphene and Fe + graphene would increase because surface dipole moment make a contribution to electron.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要