Use of Time Domain Reflectometry to Estimate Moisture and Density of Unbound Road Materials: Laboratory Calibration and Field Investigation

TRANSPORTATION RESEARCH RECORD(2017)

引用 24|浏览3
暂无评分
摘要
Soil moisture content and dry density of unbound granular pavement materials are important properties for compaction control that influence pavement performance under cyclic loading. Under these loading conditions, increasing moisture content can accelerate significant changes in density. Time domain reflectometry (TDR) is a method for measuring the moisture content and density of soils with rod probe sensors. This paper introduces new calibration functions for TDR measurements using these rod probe sensors embedded in the soil. TDR measurements were taken in the laboratory for a typical road base material at two basically different conditions: at constant moisture content with different dry densities and at constant dry density with different moisture contents. In this study, a relationship was developed between the voltage drop occurring for the passage of an electromagnetic wave through the soil and the bulk density. The permittivity of the soil sample obtained from the travel time of TDR signals was used to calculate the volumetric moisture content. Finally, the gravimetric moisture content was obtained from the volumetric moisture content and bulk density relationship. For the validation of the calibration functions, rod probe sensors were installed in a road to obtain in situ moisture content and density under field conditions. Laboratory results indicate that the calibration functions are independent of moisture and density, and the field test shows the applicability of the method. The newly developed calibration functions allow for the monitoring of the long-term pavement performance, leading to a better understanding of the time-dependent evolution of, for example, rutting of roads.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要