Novel Exotic Magnetic Spin-order in Co5Ge3 Nano-size Materials

arXiv: Mesoscale and Nanoscale Physics(2017)

引用 23|浏览4
暂无评分
摘要
The Cobalt-germanium (Co-Ge) is a fascinating complex alloy system that has unique structure and exhibit range of interesting magnetic properties which would change when reduce to nanoscale dimension. At this experimental work, the high-aspect-ratio Co5Ge3 nanoparticle with average size of 8nm was synthesized by gas aggregation-type cluster-deposition technology. The nanostructure morphology of the as-made binary Co5Ge3 nanoparticles demonstrate excellent single-crystalline hexagonal structure with mostly preferable growth along (110) and (102) directions. In contrast the bulk possess Pauli paramagnetic spin-order at all range of temperature, here we discover size-driven new magnetic ordering of as-synthesized Co5Ge3 nanoparticles exhibiting ferromagnetism at room temperature with saturation magnetization of Ms = 32.2 emu/cm3. This is first report of observing such new magnetic spin ordering in this kind of material at nano-size which the magnetization has lower sensitivity to thermal energy fluctuation and exhibit high Curie temperature close to 850 K. This ferromagnetic behavior along with higher Curie temperature at Co5Ge3 nanoparticles are attributes to low-dimension and quantum-confinement effect which imposes strong spin coupling and provides a new set of size-driven spin structures in Co5Ge3 nanoparticle which no such magnetic behavior being present in the bulk of same material. This fundamental scientific study provides important insights into the formation, structural, and the magnetic property of sub 10nm Co5Ge3 nanostructure which shall lead to promising practical versatile applications for magneto- germanide based nano-devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要