Does circadian regulation lead to optimal gas exchange regulation

bioRxiv(2017)

引用 0|浏览33
暂无评分
摘要
Optimal stomatal theory is an evolutionary model proposing that leaves trade-off Carbon (C) for water to maximise C assimilation (A) and minimise transpiration (E), thereby generating a marginal water cost of carbon gain (λ) that remains constant over short temporal scales. The circadian clock is a molecular timer of metabolism that controls A and stomatal conductance (gs), amongst other processes, in a broad array of plant species. Here, we test whether circadian regulation contributes towards achieving optimal stomatal behaviour. We subjected bean (Phaseolus vulgaris) and cotton (Gossypium hirsutum) canopies to fixed, continuous environmental conditions of photosynthetically active radiation, temperature and vapour pressure deficit over 48 hours. We observed a significant and self-sustained circadian oscillation in A and in stomatal conductance (gs) which also led to a circadian oscillation in λ. The lack of constant marginal water cost indicates that circadian regulation does not directly lead to optimal stomatal behaviour. However, the temporal pattern in gas exchange, indicative of either maximizing A or of minimizing E, depending upon time of day, indicates that circadian regulation could contribute towards optimizing stomatal responses. More broadly, our results add to the emerging field of plant circadian ecology and show that molecular controls may partially explain leaf-level patterns observed in the field.
更多
查看译文
关键词
bean,cotton,ecological strategies,gas exchange,leaf,molecular regulation,photosynthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要