Post-Transcriptional Control of Coenzyme Q Biosynthesis Revealed by Transomic Analysis of the RNA-Binding Protein Puf3p

bioRxiv(2017)

引用 2|浏览6
暂无评分
摘要
Coenzyme Q (CoQ) is a redox active lipid required for mitochondrial oxidative phosphorylation (OxPhos). How CoQ biosynthesis is coordinated with the biogenesis of OxPhos protein complexes is unclear. Here, we show that the Saccharomyces cerevisiae RNA-binding protein (RBP) Puf3p directly regulates CoQ biosynthesis. To establish the mechanism for this regulation, we employed a transomic strategy to identify mRNAs that not only bind Puf3p, but also are regulated by Puf3p in vivo. The CoQ biosynthesis enzyme Coq5p is a critical Put3p target: Puf3p regulates the level of Coq5p and prevents its toxicity, thereby enabling efficient CoQ production. In parallel, Puf3p represses a specific set of proteins involved in mitochondrial protein import, translation, and OxPhos complex assembly -- pathways essential to prime mitochondrial biogenesis. Our data reveal a mechanism for post-transcriptionally coordinating CoQ production with OxPhos biogenesis and, more broadly, demonstrate the power of transomics for defining genuine targets of RBPs.
更多
查看译文
关键词
transomic analysis,post-transcriptional,rna-binding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要