The effect of ocean alkalinity and carbon transfer on deep-sea carbonate ion concentration during the past five glacial cycles

Earth and Planetary Science Letters(2017)

引用 36|浏览9
暂无评分
摘要
Glacial–interglacial deep Indo-Pacific carbonate ion concentration ([CO32−]) changes were mainly driven by two mechanisms that operated on different timescales: 1) a long-term increase during glaciation caused by a carbonate deposition reduction on shelves (i.e., the coral reef hypothesis), and 2) transient carbonate compensation responses to deep ocean carbon storage changes. To investigate these mechanisms, we have used benthic foraminiferal B/Ca to reconstruct deep-water [CO32−] in cores from the deep Indian and Equatorial Pacific Oceans during the past five glacial cycles. Based on our reconstructions, we suggest that the shelf-to-basin shift of carbonate deposition raised deep-water [CO32−], on average, by 7.3 ± 0.5 (SE) μmol/kg during glaciations. Oceanic carbon reorganisations during major climatic transitions caused deep-water [CO32−] deviations away from the long-term trend, and carbonate compensation processes subsequently acted to restore the ocean carbonate system to new steady state conditions. Deep-water [CO32−] showed similar patterns to sediment carbonate content (%CaCO3) records on glacial–interglacial timescales, suggesting that past seafloor %CaCO3 variations were dominated by deep-water carbonate preservation changes at our studied sites.
更多
查看译文
关键词
carbonate ion,alkalinity,glacial,carbonate compensation,coral reef hypothesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要