Experimental Design For Voltage Driven Tracer Incorporation And Diffusion Studies On Oxide Thin Film Electrodes

JOURNAL OF THE ELECTROCHEMICAL SOCIETY(2017)

引用 10|浏览14
暂无评分
摘要
The effect of an applied overpotential on oxygen isotope incorporation and diffusion in oxide thin film electrodes is investigated by a novel experimental approach. A special electrode geometry leads to in-plane electron flow, perpendicular oxide ion flow and a well-defined laterally varying driving force. This design allows one to obtain a series of tracer depth profiles induced by a range of overpotentials on one and the same thin film. The approach was applied to La0.8Sr0.2MnO3 (LSM) thin films deposited by pulsed laser deposition (PLD) on yttria stabilized zirconia (YSZ) single crystals. Tracer depth profiles were measured by secondary ion mass spectrometry (SIMS). These depth profiles include examples of pronounced apparent uphill diffusion that can be explained by considering an interplay of polarization-induced changes in stoichiometry within the LSM grains combined with fast oxygen transport along the grain boundaries. (C) The Author(s) 2017. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要