Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China

Atmospheric Environment(2017)

引用 41|浏览22
暂无评分
摘要
Measurements of BVOC emissions, ozone concentration and environmental parameters were carried out from May 2013 to January 2016 in a subtropical Pinus plantation in China. Isoprene and monoterpene emissions were measured using a relaxed eddy accumulation (REA) system and a gradient technique on an above-canopy tower. In 2013, isoprene comprised 21.2% of total terpenoid emissions, while α-pinene, camphene, β-pinene and limonene constituting 51.5%, 2.4%, 9.1%, and 13.0% of total emissions, respectively. Monoterpenes together were the dominant VOCs measured contributing 71.6%. α-pinene, camphene, β-pinene and limonene constituted 67.7%, 3.2%, 11.9%, 17.2% of total monoterpene emissions. Isoprene and monoterpene emissions displayed strong diurnal variations, with lower emissions in the morning and late evening, and the highest emissions around noon. BVOC peak emissions typically occurred a few hours after the noon PAR peak. Isoprene and monoterpene emissions varied with season and were the highest in summer, contributing more than half of the total annual emission, and the lowest emissions were in winter. Evident interannual variations of isoprene, monoterpenes and total BVOCs were observed. Compared to 2013, annual BVOC emissions decreased in 2015, associated with decreases of PAR, Temperature, water vapor, and an increase of all substances in gas, liquid and solid phases in the atmospheric column (e.g., S/Q, the ratio of solar scattered radiation to global radiation). Ozone concentration showed clear diurnal variation with PAR, higher around noon and lower in the early morning and late evening. Generally, there were no evident correlations between ozone concentrations and BVOC emissions, or the vertical gradients of ozone concentrations and BVOC concentrations. Under all sky conditions (including cloudy skies), no strong correlations at a high confidence level or very similar variation patterns were observed between any two following parameters, BVOC emissions, PAR, temperature, water vapor, and S/Q. The major factors controlling BVOC emissions were PAR and temperature but biomass burning smoke and phenology (pine florescence) may also play a role. The mean emission factors at standard conditions determined using the MEGAN model emission algorithms and empirical model of BVOC emissions were 0.71 and 1.19 mg m−2 h−1 for isoprene and 1.39 and 1.65 mg m−2 h−1 for total monoterpenes, respectively.
更多
查看译文
关键词
Biogenic volatile organic compounds,Emission flux,Isoprene,Monoterpene,Ozone,Emission model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要