Silicon photonic transceivers for beyond 1-Tb/s datacom applications (Conference Presentation)

Proceedings of SPIE(2017)

引用 1|浏览28
暂无评分
摘要
The field of silicon photonics is attracting a lot of attention due to the prospect of low-cost and compact circuits that integrate photonic and microelectronic elements on a single chip. Such silicon chips have applications in optical transmitter and receiver circuits for short-distance communications as well as for long-haul optical transmissions. Silicon photonics has proven to be a successful platform for many functional elements such as low-loss waveguides, filters, multiplexers/demultiplexers, optical modulators and Ge-on-Si photodiodes. On-going developments for advanced photonic integrated circuits include compact and energy-efficient silicon modulators, temperature-insensitive passive devices and hybrid III-V on Silicon lasers.The European COSMICC project gathers key industrial and research partners in the field of silicon photonics, CMOS electronics, printed circuit board packaging, optical transceivers and datacenters, aiming at developing low-cost and low-energy consumption 50 Gb/s 4-wavelength coarse wavelength division multiplexing optical transceivers that will be packaged on-board. Combining CMOS electronics and Si-photonics with innovative high-throughput fiber attachment techniques, the developed solutions will be scalable beyond 1 Tb/s to meet the future data-transmission requirements in data-centers and super computing systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要