A Macrocyclic Peptide Ligand Binds the Oncogenic MicroRNA-21 Precursor and Suppresses Dicer Processing.

ACS Chemical Biology(2017)

引用 49|浏览10
暂无评分
摘要
MicroRNAs (miRNAs) help orchestrate cellular growth and survival through post-transcriptional mechanisms. The dysregulation of miRNA biogenesis can lead to cellular growth defects and chemotherapeutic resistance and plays a direct role in the development of many chronic diseases. Among these RNAs, miR-21 is consistently overexpressed in most human cancers, leading to the down-regulation of key tumor-suppressing and pro-apoptotic factors, suggesting that inhibition of miR-21 biogenesis could reverse these negative effects. However, targeted inhibition of miR-21 using small molecules has had limited success. To overcome difficulties in targeting RNA secondary structure with small molecules, we developed a class of cyclic β-hairpin peptidomimetics which bind to RNA stem-loop structures, such as miRNA precursors, with potent affinity and specificity. We screened an existing cyclic peptide library and discovered a lead structure which binds to pre-miR21 with KD = 200 nM and prefers it over other pre-miRNAs. Th...
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要