A directional model of tropospheric horizontal gradients in Global Positioning System and its application for particular weather scenarios

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES(2017)

引用 17|浏览12
暂无评分
摘要
Improper modeling of horizontal tropospheric gradients in GPS analysis induces errors in estimated parameters, with the largest impact on heights and tropospheric zenith delays. The conventional two-axis tilted plane model of horizontal gradients fails to provide an accurate representation of tropospheric gradients under weather conditions with asymmetric horizontal changes of refractivity. A new parametrization of tropospheric gradients whereby an arbitrary number of gradients are estimated as discrete directional wedges is shown via simulations to significantly improve the accuracy of recovered tropospheric zenith delays in asymmetric gradient scenarios. In a case study of an extreme rain event that occurred in September 2002 in southern France, the new directional parametrization is able to isolate the strong gradients in particular azimuths around the GPS stations consistent with the V shape spatial pattern of the observed precipitation. In another study of a network of GPS stations in the Sierra Nevada region where highly asymmetric tropospheric gradients are known to exist, the new directional model significantly improves the repeatabilities of the stations in asymmetric gradient situations while causing slightly degraded repeatabilities for the stations in normal symmetric gradient conditions. The average improvement over the entire network is approximate to 31%, while the improvement for one of the worst affected sites P631 is approximate to 49% (from 8.5 mmto 4.3mm) in terms of weighted root-mean-square (WRMS) error and approximate to 82% (from -1.1 to -0.2) in terms of skewness. At the same station, the use of the directional model changes the estimates of zenith wet delay by 15mm (approximate to 25%).
更多
查看译文
关键词
tropospheric horizontal gradients,Global Positioning System,directional gradient model,asymmetric gradients,tropospheric zenith delay
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要