Model Of Self Assembled Monolayer Based Molecular Diodes Made Of Ferrocenyl-Alkanethiols

JOURNAL OF APPLIED PHYSICS(2017)

引用 12|浏览34
暂无评分
摘要
There has been significant work investigating the use of self assembled monolayers (SAMs) made of ferrocenyl terminated alkanethiols for realizing molecular diodes, leading to remarkably large forward-to-reverse current rectification ratios. In this study, we use a multiband barrier tunneling model to examine the electrical properties of SAM-based molecular diodes made of HSC(9)Fc, HSC(11)Fc, and HSCiFcC(13-i) (0 <= i <= 13). Using our simple physical model, we reproduce the experimental data of charge transport across various ferrocenyl substituted alkanethiols performed by Nijhuis, Reus, and Whitesides [J. Am. Chem. Soc. 132, 18386-184016 (2010)] and Yuan et al. [Nat. Commun. 6, 6324 (2015)]. Especially, the model allows predicting the rectification direction in HSCiFcC(13-i) (0 <= i <= 13) based molecular diodes depending on the position of the ferrocenyl (Fc) moiety within the molecules. We show that the asymmetry of the barrier length at both sides of the Highest Occupied Molecular Orbital of the ferrocenyl moiety strongly contributes to the rectifying properties of ferrocenyl-alkanethiol based molecular junctions. Furthermore, our results reveal that bound and quasi-bound states play an important role in the charge transport. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要