Columnar Self-Assemblies Of Triarylamines As Scaffolds For Artificial Biomimetic Channels For Ion And For Water Transport

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2017)

引用 59|浏览14
暂无评分
摘要
Triarylamine molecules appended with crown-ethers or carboxylic moieties form self-assembled supramolecular channels within lipid bilayers. Fluorescence assays and voltage clamp studies reveal that the self-assemblies incorporating the crown ethers work as single channels for the selective transport of K+ or Rb+. The X-ray crystallographic structures confirm the mutual columnar self-assembly of triarylamines and crown-ethers. The dimensional fit of K+ cations within the 18-crown-6 leads to a partial dehydration and to the formation of alternating K+ cation-water wires within the channel. This original type of organization may be regarded as a biomimetic alternative of columnar K+-water wires observed for the natural KcsA channel. Supramolecular columnar arrangement was also shown for the triarylamine-carboxylic acid conjugate. In this latter case, stopped-flow light scattering analysis reveals the transport of water across lipid bilayer membranes with a relative water permeability as high as 17 mu m s(-1).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要