A dual role for the RhoGEF Ephexin5 in regulation of dendritic spine outgrowth

Molecular and Cellular Neuroscience(2017)

引用 15|浏览25
暂无评分
摘要
The outgrowth of new dendritic spines is closely linked to the formation of new synapses, and is thought to be a vital component of the experience-dependent circuit plasticity that supports learning. Here, we examined the role of the RhoGEF Ephexin5 in driving activity-dependent spine outgrowth. We found that reducing Ephexin5 levels increased spine outgrowth, and increasing Ephexin5 levels decreased spine outgrowth in a GEF-dependent manner, suggesting that Ephexin5 acts as an inhibitor of spine outgrowth. Notably, we found that increased neural activity led to a proteasome-dependent reduction in the levels of Ephexin5 in neuronal dendrites, which could facilitate the enhanced spine outgrowth observed following increased neural activity. Surprisingly, we also found that Ephexin5-GFP levels were elevated on the dendrite at sites of future new spines, prior to new spine outgrowth. Moreover, lowering neuronal Ephexin5 levels inhibited new spine outgrowth in response to both global increases in neural activity and local glutamatergic stimulation of the dendrite, suggesting that Ephexin5 is necessary for activity-dependent spine outgrowth. Our data support a model in which Ephexin5 serves a dual role in spinogenesis, acting both as a brake on overall spine outgrowth and as a necessary component in the site-specific formation of new spines.
更多
查看译文
关键词
Dendritic spine,Ephexin5,Activity-dependent,Hippocampus,Structural plasticity,Proteasome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要