INFLUENCE OF THREE DIFFERENT CURVATURES FLEX-FOOT PROSTHESIS WHILE SINGLE-LEG STANDING OR RUNNING: A FINITE ELEMENT ANALYSIS STUDY

JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY(2017)

引用 4|浏览4
暂无评分
摘要
Flex foot device was one of the most common prosthesis for the athletes with the transtibial amputation on the recent market. Thus, the results of investigation with biomechanics on the flex foot would be a considerable impact on the performance of disabled athletes wearing the flex foots. This study was designed to investigate the biomechanical condition of the flex foot prosthesis with different curvatures while standing and running by finite element analysis. This study demonstrated finite element models of flex foot established with three different curvatures 20 degrees (small bending), 35 degrees (medium bending) and 50 degrees (big bending). Besides, it simulates and investigates the condition of flex foot while a person is wearing it with single-leg standing or running. The evaluation indices were selected as von Mises stress and displacements at top of socket surface. The results show that the big-bending flex foot generated the higher stress and the larger deformed displacement. Without exceeding the material tolerance of the flex foot, the larger displacement of big-bending flex foot could generate more energy, which possessed larger resilient potential energy and enabled the athletes to have better performance after using the flex foot. As a result, due to its beneficial property of energy storage and return, the large-bending flex foot user could have better effect. In the future, more innovative designs of the flex foot prosthesis can be laid out with the reference of the result in this study.
更多
查看译文
关键词
Flex foot,finite element analysis,biomechanics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要