Selectivity Of Human Tlr9 For Double Cpg Motifs And Implications For The Recognition Of Genomic Dna

JOURNAL OF IMMUNOLOGY(2017)

引用 43|浏览8
暂无评分
摘要
TLR9 acts as a first-line host defense against pathogens recognizing DNA comprising unmethylated CpG motifs present in bacteria and viruses. Species-and sequence-specific recognition differences were demonstrated for TLR9 receptors. Activation of human (h) TLR9 requires a pair of closely positioned CpG motifs within oligodeoxyribonucleotides (ODNs), whereas mouse TLR9 is effectively activated by an ODN with a single CpG motif. Molecular model-directed mutagenesis identified two regions, site A and site B, as important for receptor activation. Amino acid residues Gln(346) and Arg(348) within site A contribute to the sequencespecific recognition by hTLR9 in determining the bias for two appropriately spaced CpG motifs within immunostimulatory ODNs. Mutation of Gln(562) at site B, in combination with Gln(346) and Arg(348) mutations of mouse counterparts, increased activation of hTLR9 by mouse-specific ODN, mammalian genomic DNA, and bacterial DNA. We propose that the double CpG motif sequence-specificity of hTLR9 results in decreased activation by ODNs with a lower frequency of CpG motifs, such as from mammalian genomic DNA, which increases hTLR9 selectivity for pathogen versus host DNA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要