Ni Interlayer to Improve Low-Pressure Diffusion Bonding of 316L SS Press Fit Tube-to-Tubesheet Joints for Coiled Tube Gas Heaters

JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE(2017)

引用 5|浏览4
暂无评分
摘要
This study suggests a new approach to diffusion bonding (DB) 316L stainless steel: a low-pressure procedure that includes a nickel interlayer. In this approach, relatively lower pressure is applied to the sample before the DB process, in contrast to the usual approach in which higher pressure is applied during the DB process. This new procedure was tested on mock-up 316L stainless steel tube-to-tubesheet joints, which simulated similar joints in coiled-tube heat-exchanger applications. This study confirms that the new procedure meets the overall success criteria, namely, a pull-out force exceeding the force required for tube rupture. It also shows that the DB joint is improved by the use of a Ni interlayer; the joint strength increased by approximately 33% for a 0.25 mu m Ni interlayer and by approximately 18% for a 5 mu m Ni interlayer. The joint cross sections were qualitatively examined using optical microscopy (OM) and scanning electron microscopy (SEM); the observations suggest that only portions of the interface were diffusion bonded, as a result of the low-pressure procedure and the surface roughness (due to the sample fabrication). The portions that were diffusion bonded, though, were sound, as characterized by the fact that the steel grains grew through the interface line to create a continuous metallographic structure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要