3D precision measurements of meter sized surfaces using low cost illumination and camera techniques

MEASUREMENT SCIENCE AND TECHNOLOGY(2017)

引用 5|浏览3
暂无评分
摘要
Using dedicated stereo camera systems and structured light is a well-known method for measuring the 3D shape of large surfaces. However the problem is not trivial when high accuracy, in the range of few tens of microns, is needed. Many error sources need to be handled carefully in order to obtain high quality results. In this study, we present a measurement method based on low-cost camera and illumination solutions combined with high-precision image analysis and a new approach in camera calibration and 3D reconstruction. The setup consists of two ordinary digital cameras and a Gobo projector as a structured light source. A matrix of dots is projected onto the target area. The two cameras capture the images of the projected pattern on the object. The images are processed by advanced subpixel resolution algorithms prior to the application of the 3D reconstruction technique. The strength of the method lays in a different approach for calibration, 3D reconstruction, and high-precision image analysis algorithms. Using a 10 mm pitch pattern of the light dots, the method is capable of reconstructing the 3D shape of surfaces. The precision (1 sigma repeatability) in the measurements is < 10 mu m over a volume of 60 x 50 x 10 cm(3) at a hardware cost of similar to 2% of available advanced measurement techniques. The expanded uncertainty (95% confidence level) is estimated to be 83 mu m, with the largest uncertainty contribution coming from the absolute length of the metal ruler used as reference.
更多
查看译文
关键词
3D reconstruction,large area measurement,camera calibration,structured light,image processing,image metrology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要