WRF Hub-Height Wind Forecast Sensitivity to PBL Scheme, Grid Length, and Initial Condition Choice in Complex Terrain

WEATHER AND FORECASTING(2017)

引用 39|浏览6
暂无评分
摘要
This study evaluates the sensitivity of wind turbine hub-height wind speed forecasts to the planetary boundary layer (PBL) scheme, grid length, and initial condition selection in the Weather Research and Forecasting (WRF) Model over complex terrain. Eight PBL schemes available for the WRF-ARW dynamical core were tested with initial conditions sources from the North American Mesoscale (NAM) model andGlobal Forecast System (GFS) to produce short-term wind speed forecasts. The largest improvements in forecast accuracy primarily depended on the grid length or PBL scheme choice, although the most important factor varied by location, season, time of day, and bias-correction application. Aggregated over all locations, the Asymmetric Convective Model, version 2 (ACM2) PBL scheme provided the best forecast accuracy, particularly for the 12-km grid length. Other PBL schemes and grid lengths, however, did perform better than the ACM2 scheme for individual seasons or locations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要