Geochemical and microstructural evidence for interseismic changes in fault zone permeability and strength, Alpine Fault, New Zealand

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS(2017)

引用 23|浏览9
暂无评分
摘要
Oblique dextral motion on the central Alpine Fault in the last circa 5 Ma has exhumed garnet-oligoclase facies mylonitic fault rocks from approximate to 35 km depth. During exhumation, deformation, accompanied by fluid infiltration, has generated complex lithological variations in fault-related rocks retrieved during Deep Fault Drilling Project (DFDP-1) drilling at Gaunt Creek, South Island, New Zealand. Lithological, geochemical, and mineralogical results reveal that the fault comprises a core of highly comminuted cataclasites and fault gouges bounded by a damage zone containing cataclasites, protocataclasites, and fractured mylonites. The fault core-alteration zone extends approximate to 20-30 m from the principal slip zone (PSZ) and is characterized by alteration of primary phases to phyllosilicate minerals. Alteration associated with distinct mineral phases occurred proximal the brittle-to-plastic transition (T300-400 degrees C, 6-10 km depth) and at shallow depths (T=20-150 degrees C, 0-3 km depth). Within the fault core-alteration zone, fractures have been sealed by precipitation of calcite and phyllosilicates. This sealing has decreased fault normal permeability and increased rock mass competency, potentially promoting interseismic strain buildup.
更多
查看译文
关键词
Alpine Fault,New Zealand,fault rocks,alteration,mineralogy,geochemistry,microstructure,permeability,sealing,seismic cycle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要