Isogeometric approximation of cardiac electrophysiology models on surfaces: An accuracy study with application to the human left atrium

Computer Methods in Applied Mechanics and Engineering(2017)

引用 24|浏览13
暂无评分
摘要
We consider Isogeometric Analysis in the framework of the Galerkin method for the spatial approximation of cardiac electrophysiology models defined on NURBS surfaces; specifically, we perform a numerical comparison between basis functions of degree p=1 and globally Ck-continuous, with k=0 or p-1, to find the most accurate approximation of a propagating front with the minimal number of degrees of freedom. We show that B-spline basis functions of degree p=1, which are Cp-1-continuous capture accurately the front velocity of the transmembrane potential even with moderately refined meshes; similarly, we show that, for accurate tracking of curved fronts, high-order continuous B-spline basis functions should be used. Finally, we apply Isogeometric Analysis to an idealized human left atrial geometry described by NURBS with physiologically sound fiber directions and anisotropic conductivity tensor to demonstrate that the numerical scheme retains its favorable approximation properties also in a more realistic setting.
更多
查看译文
关键词
Isogeometric analysis,Cardiac electrophysiology,Surface PDEs,High-order approximation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要