Quantum measurement with atomic cavity optomechanics

Bulletin of the American Physical Society(2017)

引用 23|浏览7
暂无评分
摘要
A cloud of ultracold atoms trapped within the confines of a high-finesse optical cavity shakes from the pressure of the light that probes it. This form of measurement backaction, a central component of quantum measurement theory, is the subject of this dissertation. Enlisting the collective motion of ultracold atoms as the mechanical degree of freedom in a cavity optomechanical system, we reach settings cold and quiet enough to allow for the effects of measurement backaction to manifest. We report predictions for and experimental observa- tions of the Standard Quantum Limit for force sensitivity, optical ponderomotive squeezing, and the possibility of complex squeezing through generalized optical correlations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要