Correlating Titania Nanostructured Morphologies with Performance as Anode Materials for Lithium-Ion Batteries

ACS Sustainable Chemistry & Engineering(2016)

引用 32|浏览13
暂无评分
摘要
Titanium oxide is a ubiquitous and commonly used material in the environment. Herein, we have systematically probed the use of various hydrothermally derived titania (TiO2) architectures including zero-dimensional (0D) nanoparticles, one-dimensional (1D) nanowires, and three-dimensional (3D) urchin-like motifs as anode materials for lithium-ion batteries. The structure and morphology of these nanomaterials were characterized using electron microscopy. The surface areas of these materials were quantitatively analyzed through Brunauer–Emmett–Teller (BET) adsorption measurements and were found to be relatively similar for both 1D and 3D samples with a slightly higher surface area associated with the 0D nanoparticles. Hence, to normalize for the surface area effect, readily available 0D commercial nanoparticles (Degussa P25), which possessed a similar surface area to that of as-prepared 1D and 3D materials, were also analyzed. Electrochemical analysis revealed a superior performance of hydrothermally derived ...
更多
查看译文
关键词
Titanium dioxide,Metal oxide,Morphology dependence,Electrochemical performance,Anode materials,Lithium-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要