The Clifford group fails gracefully to be a unitary 4-design

arXiv: Quantum Physics(2016)

引用 23|浏览70
暂无评分
摘要
A unitary t-design is a set of unitaries that is evenly distributed in the sense that the average of any t-th order polynomial over the design equals the average over the entire unitary group. In various fields -- e.g. quantum information theory -- one frequently encounters constructions that rely on matrices drawn uniformly at random from the unitary group. Often, it suffices to sample these matrices from a unitary t-design, for sufficiently high t. This results in more explicit, derandomized constructions. The most prominent unitary t-design considered in quantum information is the multi-qubit Clifford group. It is known to be a unitary 3-design, but, unfortunately, not a 4-design. Here, we give a simple, explicit characterization of the way in which the Clifford group fails to constitute a 4-design. Our results show that for various applications in quantum information theory and in the theory of convex signal recovery, Clifford orbits perform almost as well as those of true 4-designs. Technically, it turns out that in a precise sense, the 4th tensor power of the Clifford group affords only one more invariant subspace than the 4th tensor power of the unitary group. That additional subspace is a stabilizer code -- a structure extensively studied in the field of quantum error correction codes. The action of the Clifford group on this stabilizer code can be decomposed explicitly into previously known irreps of the discrete symplectic group. We give various constructions of exact complex projective 4-designs or approximate 4-designs of arbitrarily high precision from Clifford orbits. Building on results from coding theory, we give strong evidence suggesting that these orbits actually constitute complex projective 5-designs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要