Implementation of A Nanosecond Time-resolved APD Detector System for NRS Experiment in HEPS-TF

arXiv: Instrumentation and Detectors(2016)

引用 23|浏览3
暂无评分
摘要
A nanosecond time-resolved APD detector system is implemented for Nuclear Resonance Scattering (NRS) experiments in High Energy Photon Source-Test Facility (HEPS-TF) project of China. The detector system consists of three parts: the APD sensors, the fast preamplifiers and the TDC readout electronics. To improve the reception solid angle and the quantum efficiency, the C30703FH APDs (fabricated by Excelitas) are used as the sensors of the detectors. The C30703FH has an effective light-sensitive area of 10X10 mm2 and an absorption layer thickness of 110 {\mu}m. The fast preamplifier with gain of 59 dB and bandwidth of 2 GHz is designed to readout the weak signal outputted by the C30703FH APD. The detector system can work in single photon measurement mode because the preamplifier increases the signal-to-noise ratio. Moreover, the TDC is realized by FPGA multiphase method with a resolution bin of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the FPGA TDC. In the X-ray energy of 14.4 keV, the time resolution (FWHM) of the developed detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要