Osteoclast depletion with clodronate liposomes delays fracture healing in mice

JOURNAL OF ORTHOPAEDIC RESEARCH(2017)

引用 28|浏览3
暂无评分
摘要
Osteoclasts are abundant within the fracture callus and also localize at the chondro-osseous junction. However, osteoclast functions during fracture healing are not well defined. Inhibition of osteoclast formation or resorptive activity impairs callus remodeling but does not prevent callus formation. Interestingly, though anti-osteoclast therapies differentially affect resolution of callus cartilage into bone. Treatments that inhibit osteoclast formation or viability tend to impair callus cartilage resolution, while treatments that target inhibition of bone resorption generally do not affect callus cartilage resolution. Here, we tested whether depletion of osteoclasts by systemic treatment with clodronate liposomes would similarly impair callus cartilage resolution. ICR mice were treated by intraperitoneal injections of clodronate-laden liposomes or control liposomes and subjected to closed femur fracture. Femurs were resected at multiple times after fracture and analyzed by radiography, histology, and mechanical testing to determine effects on healing. Clodronate liposome treatment did not prevent callus formation. However, radiographic scoring indicated that clodronate liposome treatment impaired healing. Clodronate liposome treatment significantly reduced callus osteoclast populations and delayed resolution of callus cartilage. Consistent with continued presence of callus cartilage, torsional mechanical testing found significant decreases in callus material properties after 28 days of healing. The results support a role for osteoclasts in the resolution of callus cartilage into bone. Whether the cartilage resolution role for osteoclasts is limited to simply resorbing cartilage at the chondro-osseous junction or in promoting bone formation at the chondro-osseous junction through another mechanism, perhaps similar to the reversal process in bone remodeling, will require further experimentation. (C) 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1699-1706, 2017.
更多
查看译文
关键词
fracture healing,bone regeneration,osteogenesis,osteoclasts,macrophages
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要