Synthesis of EDTA-assisted CeVO4 nanorods as robust peroxidase mimics towards colorimetric detection of H2O2

Journal of Materials Chemistry B(2016)

引用 45|浏览7
暂无评分
摘要
In this paper, CeVO4 materials were developed as highly efficient biomimetic catalysts for the first time to detect H2O2. These CeVO4 materials were prepared by a facile hydrothermal method with the assistance of EDTA, exhibiting different morphologies, surface properties, and distinct peroxidase mimetic activities. Among them, CeVO4-2 nanorods (NRs) were proved to display the best intrinsic peroxidase-like property compared to other CeVO4 samples due to their more negative potential and larger BET specific surface area, which could efficiently catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 to generate a blue oxide. Based on the excellent peroxidase mimetic catalytic activity of CeVO4-2 NRs, a simple, convenient and visual H2O2 detection system was successfully established. The detection limit of H2O2 could reach as low as 0.07 μM. Moreover, the CeVO4-2 NR-based assay system presented an excellent selectivity, practicability, long-term stability, and reusability. The peroxidase-like catalytic mechanism of CeVO4-2 NRs was proposed on the basis of active species trapping experiments. This work provides a novel, convenient, rapid, and ultrasensitive system for the colorimetric detection of H2O2, which has a bright prospect in H2O2 detection and biomedical analysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要