The Oceanographic Multipurpose Software Environment

Geoscientific Model Development Discussions(2016)

引用 1|浏览9
暂无评分
摘要
In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). This framework aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, OMUSE facilitates the design of numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales. Rapid development of simulation models is made possible through the creation of simple high-level scripts, with the low-level core part of the abstraction designed to deploy these simulations efficiently on heterogeneous high performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver, to the global circulation model POP. We discuss the types of the couplings that can be implemented using OMUSE and present example applications, that demonstrate the efficient and relatively straightforward model initialisation and coupling within OMUSE. These also include the concurrent use of data analysis tools on a running model. We also give examples of multi-scale and multi-physics simulations by embedding a regional ocean model into a global ocean model, and in coupling a surface wave propagation model with a coastal circulation model.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要