Theoretical Modeling And Experimental Observations Of The Atomic Layer Deposition Of Sro Using A Cyclopentadienyl Sr Precursor

JOURNAL OF CHEMICAL PHYSICS(2016)

引用 3|浏览4
暂无评分
摘要
First-principle calculations are used to model the adsorption and hydration of strontium bis(cyclopentadienyl) [Sr(Cp)(2)] on TiO2-terminated strontium titanate, SrTiO3 (STO), for the deposition of strontium oxide, SrO, by atomic layer deposition (ALD). The Sr(Cp)(2) precursor is shown to adsorb on the TiO2-terminated surface, with the Sr atom assuming essentially the bulk position in STO. The C-Sr bonds are weaker than in the free molecule, with a Ti atom at the surface bonding to one of the C atoms in the cyclopentadienyl rings. The surface does not need to be hydrogenated for precursor adsorption. The calculations are compared with experimental observations for a related Sr cyclopentadienyl precursor, strontium bis(triisopropylcyclopentadienyl) [Sr((Pr3Cp)-Pr-i)(2)], adsorbed on TiO2-terminated STO. High-resolution x-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy show adsorption of the Sr precursor on the TiO2-terminated STO after a single precursor dose. This study suggests that ALD growth from the strontium precursors featuring cyclopentadienyl ligands, such as Sr(Cp)(2), may initiate film growth on non-hydroxylated surfaces. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要