Correction: Regulation of ubiquitin-like with plant homeodomain and RING finger domain 1 (UHRF1) protein stability by heat shock protein 90 chaperone machinery.

Journal of Biological Chemistry(2018)

引用 9|浏览16
暂无评分
摘要
As a protein critical for DNA maintenance methylation and cell proliferation, UHRF1 is frequently highly expressed in various human cancers and is considered as a drug target for cancer therapy. In a high throughput screening for small molecules that induce UHRF1 protein degradation, we have identified the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). We present evidence that UHRF1 interacts with HSP90 chaperone complex and is a novel HSP90 client protein. Pharmacological inhibition of HSP90 with 17-AAG or 17-dimethylaminoethylamino-17-demethoxygeldanamycin results in UHRF1 ubiquitination and proteasome-dependent degradation. Interestingly, this HSP90 inhibitor-induced UHRF1 degradation is independent of CHIP and CUL5, two previously identified ubiquitin E3 ligases for HSP90 client proteins. In addition, this degradation is dependent neither on the intrinsic E3 ligase of UHRF1 nor on the E3 ligase SCF-TRCP that has been implicated in regulation of UHRF1 stability. We also provide evidence that HSP90 inhibitors may suppress cancer cell proliferation in part through its induced UHRF1 degradation. Taken together, our results identify UHRF1 as a novel HSP90 client protein and shed light on the regulation of UHRF1 stability and function.
更多
查看译文
关键词
70-kilodalton heat shock protein (HSP70),cancer therapy,DNA methylation,protein degradation,ubiquitin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要