Elevation of IGFBP2 contributes to mycotoxin T-2-induced chondrocyte injury and metabolism

Biochemical and Biophysical Research Communications(2016)

引用 18|浏览29
暂无评分
摘要
Kashin-Beck disease (KBD) is an endemic degenerative osteoarthropathy. The mycotoxin of T-2 toxin is extensively accepted as a major etiological contributor to KBD. However, its function and mechanism in KBD remains unclearly elucidated. Here, T-2 toxin treatment induced chondrocyte injury in a time- and dose-dependent manner by repressing cell viability and promoting cell necrosis and apoptosis. Importantly, T-2 suppressed the transcription of type II collagen and aggrecan, as well as the release of sulphated glycosaminoglycan (sGAG). Furthermore, exposure to T-2 enhanced the transcription of matrix metalloproteinases (MMPs), including MMP-1, -2, -3 and -9. In contrast to control groups, higher expression of insulin-like growth factor binding protein 2 (IGFBP2) was observed in chondrocytes from KBD patients. Interestingly, T-2 toxin caused a dramatical elevation of IGFBP2 expression in chondrocytes. Mechanism analysis corroborated that cessation of IGFBP2 expression alleviated T-2-induced damage to chondrocytes. Simultaneously, transfection with IGFBP2 siRNA also attenuated matrix synthesis and catabolism-related gene expressions of MMPs. Together, this study validated that T-2 toxin exposure might promote the progression of KBD by inducing chondrocyte injury, suppressing matrix synthesis and accelerating cellular catabolism through IGFBP2. Therefore, this research will elucidate a new insight about how T-2 toxin participate in the pathogenesis of KBD.
更多
查看译文
关键词
Kashin-Beck disease,Mycotoxin T-2,Chondrocyte injury,Chondrocyte metabolism,IGFBP2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要