The Effect Of Local Melting Of Dna On Dna Loop Formation

BIOPHYSICAL JOURNAL(2016)

引用 0|浏览4
暂无评分
摘要
Statistical mechanics of double-stranded DNA (dsDNA) is well described by the wormlike chain model (WLC) which assumes a harmonic bending potential. Such smooth bending potential may no longer be valid for large bending angles to form small loops (u003c 100 bp). Instead, DNA may rely on rare structural transitions such as local melting (opening) of base pairs to lower the energetic cost. In theory, open base pairs called bubbles can increase the looping probability of short DNA molecules by a few orders of magnitude, but a robust experimental validation of this theoretical prediction is lacking. Here, we investigated the correlation between local melting probability and looping dynamics of dsDNA using single-molecule fluorescence resonance energy transfer (FRET). We designed two groups of short DNA molecules with low and high melting probabilities around their center and measured their looping and unlooping rates in equilibrium. Our data allow rigorous tests of meltable wormlike chain (MWLC) models at short length scales for setting the lower limit for the free energy of bubble formation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要