The Impact Of New Geant4-Dna Cross Section Models On Electron Track Structure Simulations In Liquid Water

JOURNAL OF APPLIED PHYSICS(2016)

引用 79|浏览4
暂无评分
摘要
The most recent release of the open source and general purpose Geant4 Monte Carlo simulation toolkit (Geant4 10.2 release) contains a new set of physics models in the Geant4-DNA extension for improving the modelling of low-energy electron transport in liquid water (<10 keV). This includes updated electron cross sections for excitation, ionization, and elastic scattering. In the present work, the impact of these developments to track-structure calculations is examined for providing the first comprehensive comparison against the default physics models of Geant4-DNA. Significant differences with the default models are found for the average path length and penetration distance, as well as for dose-point-kernels for electron energies below a few hundred eV. On the other hand, self-irradiation absorbed fractions for tissue-like volumes and low-energy electron sources (including some Auger emitters) reveal rather small differences (up to 15%) between these new and default Geant4-DNA models. The above findings indicate that the impact of the new developments will mainly affect those applications where the spatial pattern of interactions and energy deposition of very-low energy electrons play an important role such as, for example, the modelling of the chemical and biophysical stage of radiation damage to cells. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要