Three-dimensional crustal velocity structure model of the middle-eastern north China Craton (HBCrust1.0)

Science China-earth Sciences(2016)

引用 56|浏览31
暂无评分
摘要
Lithosphere thinning and destruction in the middle-eastern North China Craton (NCC), a region susceptible to strong earthquakes, is one of the research hotspots in solid earth science. All 42 seismic wide-angle reflection/refraction profiles have been completed in the middle-eastern NCC. We collect all the 2-D profiling results and perform gridding of the velocity and interface depth data, building a 3-D crustal velocity structure model for the middle-eastern NCC, named HBCrust1.0, by using the Kriging interpolation method. Our result shows that the first-arrival times calculated by HBCust1.0 fit well with the observations. The result demonstrates that the upper crust is the main seismogenic layer, and the brittle-ductile transition occurs at depths near interface C (the interface between upper and lower crust). The depth of interface Moho varies beneath the source area of the Tangshan earthquake, and a low-velocity structure is found to extend from the source area to the lower crust. Based on these observations, it can be inferred that stress accumulation responsible for the Tangshan earthquake may have been closely related to the migration and deformation of the mantle materials. Comparisons of the average velocities of the whole crust, the upper and the lower crust show that the average velocity of the lower crust under the central part of the North China Basin (NCB) in the east of the craton is obviously higher than the regional average. This high-velocity probably results from long-term underplating of the mantle magma.
更多
查看译文
关键词
Middle-eastern of the North China Craton, DSS profile, 3-D P-wave velocity structure, Earthquake, Craton destruction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要