Lateral Friction Behavior of a Thin, Tensioned Tape Wrapped Over a Grooved Roller: Experiments and Theory

JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME(2017)

引用 1|浏览6
暂无评分
摘要
Effects of friction forces on the lateral dynamics of a magnetic recording tape, wrapped around a grooved roller are investigated experimentally and theoretically. Tape is modeled as a viscoelastic, tensioned beam subjected to belt-wrap pressure and friction forces. Including the effects of stick and slip and velocity dependence of the friction force render the tape's equation of motion nonlinear. In the experiments, tape was wrapped under tension around a grooved roller in a customized tape path. The tape running speed along the axial direction was set to zero, thus only the lateral effects were studied. The grooved roller was attached to an actuator, which moved the roller across the tape. Tests were performed in slow and fast actuation modes. The slow mode was used to identify an effective static, or breakaway, friction coefficient. In the fast mode, the roller was actuated with a 50Hz sinusoid. The same effective friction coefficient was deduced from the fast actuation mode tests. This test mode also revealed a periodic stick-slip phenomenon. The stick-to-slip and slip-to-stick transitions occurred when the tape vibration speed matched the roller actuation speed. Both experiments and theory show that upon slip, tape vibrates primarily at its natural frequency, and vibrations are attenuated relatively fast due to frictional and internal damping. This work also shows that an effective friction coefficient can be described that captures the complex interactions in lateral tape motion (LTM) over a grooved roller.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要