Accurate X-Ray Absorption Spectra Of Dilute Systems: Absolute Measurements And Structural Analysis Of Ferrocene And Decamethylferrocene

JOURNAL OF PHYSICAL CHEMISTRY C(2016)

引用 19|浏览1
暂无评分
摘要
X-ray absorption fine structure (XAFS) of ferrocene (Fc) and Decamethylferrocene (DmFc) have been determined on an absolute scale using transmission measurements of multiple solutions of differing concentrations (1.5 mM, 3 mM, pure solvent) at operating temperatures of 10-20 K. Mass attenuation coefficients and photoelectric absorption cross sections are measured and tabulated for both molecules for an extended energy range in excess of 1.5 keV from the Fe K-shell absorption edge. At these temperatures, the minimization of of dynamic disorder has enabled a critical determination of the oscillatory absorption structures created by multiple-scattering paths of the excited photoelectron. These oscillatory structures are highly sensitive to the local conformation environment of the iron absorber in organometallic structures. Crystallographic and scattering studies have reported both structures characterized by staggered cyclopentadienyl rings, in contrast with low temperature crystallography and recent density functional theoretical predictions. Phase changes in the crystallographic space groups are reported for Fc at different temperatures, raising the possibility of alternative conformation states. Robust experimental techniques are described which have allowed the measurement of XAFS spectra of dilute systems by transmission at accuracies ranging from 0.2% to 2%, and observe statistically significant fine structure at photoelectron wavenumbers extending to >12 angstrom(-1). The subtle signatures of the conformations are then investigated via extensive analysis of the XAFS spectra using the full multiple scattering theory as implemented by the FEFF package. Results indicate a near-eclipsed D-5h geometry for low-temperature Fc, in contrast with a staggered D-5d geometry observed for DmFc. The ability of this experimental approach and data analysis methodology combined with advanced theory to investigate and observe such subtle conformational differences using XAFS is a powerful tool for future challenges and widens the capacity of advanced XAFS to solve a broad range of challenging systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要