Gains And Losses In Pbs Quantum Dot Solar Cells With Submicron Periodic Grating Structures

JOURNAL OF PHYSICAL CHEMISTRY C(2016)

引用 4|浏览4
暂无评分
摘要
Corrugated structures are integral to many types of photoelectronic devices, used essentially for the manipulation of optical energy inputs. Here, we have investigated the gains and losses incurred by this microscale geometrical change. We have employed nanostructured electrode gratings of 600 nm pitch in PbS colloidal quantum dot (PbS-CQD) solar cells and investigated their effect on photovoltaic properties. Solar cells employing grating structure achieved a 32% and 20% increase in short-circuit current density (J(sc)) and power conversion efficiency, respectively, compared to nonstructured reference cells. The observed photocurrent increase of the structured devices mainly stems from the enhancement of photon absorption due to the trapping of optical energy by the grating structures. This optical absorption enhancement was particularly high in the near-infrared portion of the sun spectrum where PbS-based solar cells commonly present poor absorption. We have interestingly observed that the open-circuit voltage of all the devices increase with the increase in the absorbed photon energy (at a fixed light intensity), indicating a significant shift in Fermi energy level due to localization of low photon energy generated carriers in the tail of the density of states. We elucidate the role of the grating structure on charge dynamics and discuss the feasibility of these structures for construction of cheap and efficient photovoltaic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要