Biodegradable graphene oxide and polyaptamer DNA hybrid hydrogels for implantable drug delivery

Carbon(2016)

引用 34|浏览4
暂无评分
摘要
Here, we report an injectable and biodegradable hydrogel based on drug-specific DNA polyaptamer networks using graphene oxide nanosheets as a physical crosslinker. Polyaptamer DNA and graphene oxide (PA-GO) hybrid hydrogels were constructed by single-step rolling-circle amplification (RCA) of a DNA template in the presence of GO nanosheets. The DNA template for RCA was designed to contain a kanamycin (Kan)-aptamer sequence for specific and efficient drug loading and a GO-binding 12-mer oligo A sequence. PA-GO hybrid hydrogels exhibited a bird's nest-like surface morphology, a swelling ratio of 657% at 2 h, and viscoelasticity suitable for injection and retention. PA-GO hydrogel was degraded by deoxyribonuclease I. PA-GO hybrid hydrogels specifically bound Kan, exhibiting a drug loading efficiency of 58.0% for Kan compared with 1.5% for gentamicin. Kan-loaded PA-GO (Kan/PA-GO) hybrid hydrogels exerted antibacterial activity against gram-negative (Escherichia coli) and gram-positive (Staphylococcus aureus) bacteria. In mice, subcutaneously injected, fluorescent Kan-loaded PA-GO hybrid hydrogel was retained at the injection site and degraded with time. Our findings suggest the potential of PA-GO hybrid hydrogels constructed by single-step RCA for biomedical applications.
更多
查看译文
关键词
hybrid hydrogels,biodegradable graphene oxide,implantable drug delivery,polyaptamer dna,graphene oxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要