MULISA : A New Strategy for Discovery of Protein Functional Motifs and Residues

computational science and engineering(2015)

引用 0|浏览3
暂无评分
摘要
To predict and identify details regarding function from protein sequences is an emergency task since the growing number and diversity of protein sequence. Here, we develop a novel approach for identifying conservation residues and motifs of ligand-binding proteins. In this method, called MuLiSA (Multiple Ligand-bound Structure Alignment), we first superimpose the ligands of ligand-binding proteins and then the residues of ligand-binding sites are naturally aligned. We identify important residues and patterns based on the z-scores of the residue entropy and residue-segment entropy. After identifying new pattern candidates, the profiles of patterns are generated to predict the protein function from only protein sequences. We tested our approach on ATP-binding proteins and HEM-binding proteins. The experiments show that MuLiSA can identify the conservation residues and novel patterns which are really correlated with protein functions of certain ligand-binding proteins. We found that our MuLiSA can identify conservation patterns and is better than traditional alignments such as CE and CLUSTALW in some ligand-binding proteins. We believe that our MuLiSA is useful to discover ligand-binding specificity-determining residues and functional important patterns of proteins.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要