Theoretical study of SET operation in carbon nanotube memory cell

JAPANESE JOURNAL OF APPLIED PHYSICS(2016)

引用 0|浏览2
暂无评分
摘要
We present results of self-consistent electronic structure calculations for an electromechanical memory cell consisting of a carbon nanotube (CNT) fabric between titanium leads to elucidate the mechanism whereby the applied bias works to close the current gaps in the CNT fabric. We demonstrate that the asymmetry in the bias conditions required to achieve the "SET" operation of the cell (changing it from a high resistivity to low resistivity) results from the nature of a voltage drop in a compensated semiconducting material and depends sensitively on the background charge as well as on the position of the layer where the conducting gaps occur. The calculations provide insight into the behavior of the material and suggest possible fabrication strategies to modify the functionality. (C) 2016 The Japan Society of Applied Physics
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要