Effects of aerobic training on markers of autophagy in the elderly

Age(2016)

引用 44|浏览12
暂无评分
摘要
Autophagy is a molecular process essential for the maintenance of cellular homeostasis, which appears to (i) decline with age and (ii) respond to physical exercise. In addition, recent evidence suggests a crosstalk between autophagy and toll-like receptor (TLR)-associated inflammatory responses. This study assessed the effects of aerobic exercise training on autophagy and TLR signaling in older subjects. Twenty-nine healthy women and men (age, 69.7 ± 1.0 year) were randomized to a training (TG) or a control (CG) group. TG performed an 8-week aerobic training program, while CG followed their daily routines. Peripheral blood mononuclear cells were isolated from blood samples obtained before and after the intervention, and protein levels of protein 1 light chain 3 (LC3), sequestosome 1 (p62/SQSTM1), beclin-1, phosphorylated unc-51-like kinase (ULK-1), ubiquitin-like autophagy-related (Atg)12, Atg16, and lysosome-associated membrane protein (LAMP)-2 were measured. TLR2 and TLR4 signaling pathways were also analyzed. Peak oxygen uptake increased in TG after the intervention. Protein expression of beclin-1, Atg12, Atg16, and the LC3II/I ratio increased following the training program ( p < 0.05), while expression of p62/SQSTM1 and phosphorylation of ULK-1 at Ser 757 were lower ( p < 0.05). Protein content of TLR2, TLR4, myeloid differentiation primary response gen 88 (MyD88), and TIR domain-containing adaptor-inducing interferon (TRIF) were not significantly modified by exercise. The current data indicate that aerobic exercise training induces alterations in multiple markers of autophagy, which seem to be unrelated to changes in TLR2 and TLR4 signaling pathways. These results expand knowledge on exercise-induced autophagy adaptations in humans and suggest that the exercise type employed may be a key factor explaining the potential relationship between autophagy and TLR pathways.
更多
查看译文
关键词
Elderly, Autophagy, High-intensity interval training, TLR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要