A Multiscale Study Of Bacterial Proliferation Modes Within Novel E-Coli@Si(Hipe) Hybrid Macrocellular Living Foams

Journal of Materials Chemistry B(2016)

引用 8|浏览17
暂无评分
摘要
For the first time the study at various length scales of E. coli proliferation modes within Si(HIPE) inorganic macrocellular foams is proposed. Both qualitatively and semi-quantitatively, bacterial proliferation within the foam is not homogeneous and is directly linked to the random distribution of Si(HIPE) macroscopic cells. When inoculated in a nutrient loaded Si(HIPE), the bacterial growth is enhanced within the Si(HIPE) matrices compared to the surrounding LB media. The bacterial growth kinetics tends to be faster and the concentration at saturation is roughly 100% times higher. In the case of a Si(HIPE) host free of nutrients, bacterial motion occurs as an infiltration wave; the peak of this propagation wave moves at a constant speed of 88 mu m h(-1), while bacterial concentrations within the Si(HIPE) host reach levels far above the ones reached in the presence of nutrients, suggesting a real synergetic relationship between the bacterial colony guests and the Si(HIPE) host. When a nutrient reservoir is present at the opposite position from which bacteria were inoculated, bacterial proliferation is associated with a coalescence process between the growing colonies that were rapidly established within the first hours. When the Si(HIPE) host was fully colonized we found out a specific distance between adjacent colonies of 5 and 15 mu m in good correspondence with the repartition of the wall to wall distances of the Si(HIPE) macroscopic cells, meaning that bacterial repartition once colonization occurs is optimum. These results show that Si(HIPE) foams are outstanding candidates for strengthened bacterial proliferation without motion restriction imposed by conventional silica gels.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要